Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.

Identifieur interne : 000094 ( Main/Exploration ); précédent : 000093; suivant : 000095

Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.

Auteurs : Nicolas Rouhier ; Eric Gelhaye ; Jose M. Gualberto ; Marie-Noelle Jordy ; Elisabeth De Fay ; Masakazu Hirasawa ; Sebastien Duplessis ; Stephane D. Lemaire ; Pascal Frey ; Francis Martin ; Wanda Manieri ; David B. Knaff ; Jean-Pierre Jacquot

Source :

RBID : pubmed:14976238

Descripteurs français

English descriptors

Abstract

Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula x Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and tertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.

DOI: 10.1104/pp.103.035865
PubMed: 14976238
PubMed Central: PMC389925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.</title>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation>
<nlm:affiliation>Unité Mixte de Recherche Institut National de la Recherche Agronomique-Université Henri Poincaré 1136, Interactions Arbres/Micro-Organismes, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandoeuvre cedex France.</nlm:affiliation>
<wicri:noCountry code="subField">54506 Vandoeuvre cedex France</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Gualberto, Jose M" sort="Gualberto, Jose M" uniqKey="Gualberto J" first="Jose M" last="Gualberto">Jose M. Gualberto</name>
</author>
<author>
<name sortKey="Jordy, Marie Noelle" sort="Jordy, Marie Noelle" uniqKey="Jordy M" first="Marie-Noelle" last="Jordy">Marie-Noelle Jordy</name>
</author>
<author>
<name sortKey="De Fay, Elisabeth" sort="De Fay, Elisabeth" uniqKey="De Fay E" first="Elisabeth" last="De Fay">Elisabeth De Fay</name>
</author>
<author>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
</author>
<author>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sebastien" last="Duplessis">Sebastien Duplessis</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stephane D" last="Lemaire">Stephane D. Lemaire</name>
</author>
<author>
<name sortKey="Frey, Pascal" sort="Frey, Pascal" uniqKey="Frey P" first="Pascal" last="Frey">Pascal Frey</name>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
</author>
<author>
<name sortKey="Manieri, Wanda" sort="Manieri, Wanda" uniqKey="Manieri W" first="Wanda" last="Manieri">Wanda Manieri</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:14976238</idno>
<idno type="pmid">14976238</idno>
<idno type="doi">10.1104/pp.103.035865</idno>
<idno type="pmc">PMC389925</idno>
<idno type="wicri:Area/Main/Corpus">000103</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000103</idno>
<idno type="wicri:Area/Main/Curation">000103</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000103</idno>
<idno type="wicri:Area/Main/Exploration">000103</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.</title>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation>
<nlm:affiliation>Unité Mixte de Recherche Institut National de la Recherche Agronomique-Université Henri Poincaré 1136, Interactions Arbres/Micro-Organismes, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandoeuvre cedex France.</nlm:affiliation>
<wicri:noCountry code="subField">54506 Vandoeuvre cedex France</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
</author>
<author>
<name sortKey="Gualberto, Jose M" sort="Gualberto, Jose M" uniqKey="Gualberto J" first="Jose M" last="Gualberto">Jose M. Gualberto</name>
</author>
<author>
<name sortKey="Jordy, Marie Noelle" sort="Jordy, Marie Noelle" uniqKey="Jordy M" first="Marie-Noelle" last="Jordy">Marie-Noelle Jordy</name>
</author>
<author>
<name sortKey="De Fay, Elisabeth" sort="De Fay, Elisabeth" uniqKey="De Fay E" first="Elisabeth" last="De Fay">Elisabeth De Fay</name>
</author>
<author>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
</author>
<author>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sebastien" last="Duplessis">Sebastien Duplessis</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stephane D" last="Lemaire">Stephane D. Lemaire</name>
</author>
<author>
<name sortKey="Frey, Pascal" sort="Frey, Pascal" uniqKey="Frey P" first="Pascal" last="Frey">Pascal Frey</name>
</author>
<author>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
</author>
<author>
<name sortKey="Manieri, Wanda" sort="Manieri, Wanda" uniqKey="Manieri W" first="Wanda" last="Manieri">Wanda Manieri</name>
</author>
<author>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Antioxidants (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>Catalytic Domain (genetics)</term>
<term>Chloroplast Thioredoxins (MeSH)</term>
<term>Chloroplasts (metabolism)</term>
<term>DNA, Plant (genetics)</term>
<term>Dimerization (MeSH)</term>
<term>Electron Transport (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Macromolecular Substances (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (genetics)</term>
<term>Peroxidases (metabolism)</term>
<term>Peroxiredoxins (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Antioxydants (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Dimérisation (MeSH)</term>
<term>Domaine catalytique (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (génétique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxirédoxines (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Structures macromoléculaires (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Thiorédoxines chloroplastiques (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peroxidases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Peroxidases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Peroxidases</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxidases</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Catalytic Domain</term>
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Domaine catalytique</term>
<term>Maladies des plantes</term>
<term>Peroxidases</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Chloroplastes</term>
<term>Peroxidases</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Chloroplast Thioredoxins</term>
<term>Dimerization</term>
<term>Electron Transport</term>
<term>Gene Expression</term>
<term>Genes, Plant</term>
<term>Macromolecular Substances</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Peroxiredoxins</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Gènes de plante</term>
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Peroxirédoxines</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Structures macromoléculaires</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Thiorédoxines chloroplastiques</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula x Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and tertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14976238</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>134</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2004</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.</ArticleTitle>
<Pagination>
<MedlinePgn>1027-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula x Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and tertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Unité Mixte de Recherche Institut National de la Recherche Agronomique-Université Henri Poincaré 1136, Interactions Arbres/Micro-Organismes, Université Henri Poincaré, Faculté des Sciences, BP 239, 54506 Vandoeuvre cedex France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gelhaye</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gualberto</LastName>
<ForeName>Jose M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jordy</LastName>
<ForeName>Marie-Noelle</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>De Fay</LastName>
<ForeName>Elisabeth</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirasawa</LastName>
<ForeName>Masakazu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duplessis</LastName>
<ForeName>Sebastien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Stephane D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frey</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Francis</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Manieri</LastName>
<ForeName>Wanda</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knaff</LastName>
<ForeName>David B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>02</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054479">Chloroplast Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054479" MajorTopicYN="N">Chloroplast Thioredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
<ArticleId IdType="doi">10.1104/pp.103.035865</ArticleId>
<ArticleId IdType="pii">pp.103.035865</ArticleId>
<ArticleId IdType="pmc">PMC389925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8041738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 21;278(12):10790-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Mar 9;492(1-2):58-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Oct 1;351(Pt 1):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Jul 1;255(1):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9692918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jan;269(1):272-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11784321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Apr 8;36(14):4061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9099998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 14;407(6801):211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11001062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 25;275(8):5723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 4;269(44):27670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 15;277(7):5385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Aug;19(2):196-8, 200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8527135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2002 Mar;24(2):234-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11858718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1999 Mar;89(3):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Sep 8;302(1):135-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;74(3):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1438-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Jan 28;235(4):1357-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Oct 27;270(43):25645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):29826-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):11014-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jul;19(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Jan 30;511(1-3):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Apr 16;35(15):4812-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Mar;16(3):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 2002;7(3):123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Feb;114(2):165-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11903963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 4;278(27):24409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:394-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 May 19;258(3):768-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2001 Jun;47(6):541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="De Fay, Elisabeth" sort="De Fay, Elisabeth" uniqKey="De Fay E" first="Elisabeth" last="De Fay">Elisabeth De Fay</name>
<name sortKey="Duplessis, Sebastien" sort="Duplessis, Sebastien" uniqKey="Duplessis S" first="Sebastien" last="Duplessis">Sebastien Duplessis</name>
<name sortKey="Frey, Pascal" sort="Frey, Pascal" uniqKey="Frey P" first="Pascal" last="Frey">Pascal Frey</name>
<name sortKey="Gelhaye, Eric" sort="Gelhaye, Eric" uniqKey="Gelhaye E" first="Eric" last="Gelhaye">Eric Gelhaye</name>
<name sortKey="Gualberto, Jose M" sort="Gualberto, Jose M" uniqKey="Gualberto J" first="Jose M" last="Gualberto">Jose M. Gualberto</name>
<name sortKey="Hirasawa, Masakazu" sort="Hirasawa, Masakazu" uniqKey="Hirasawa M" first="Masakazu" last="Hirasawa">Masakazu Hirasawa</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Jordy, Marie Noelle" sort="Jordy, Marie Noelle" uniqKey="Jordy M" first="Marie-Noelle" last="Jordy">Marie-Noelle Jordy</name>
<name sortKey="Knaff, David B" sort="Knaff, David B" uniqKey="Knaff D" first="David B" last="Knaff">David B. Knaff</name>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stephane D" last="Lemaire">Stephane D. Lemaire</name>
<name sortKey="Manieri, Wanda" sort="Manieri, Wanda" uniqKey="Manieri W" first="Wanda" last="Manieri">Wanda Manieri</name>
<name sortKey="Martin, Francis" sort="Martin, Francis" uniqKey="Martin F" first="Francis" last="Martin">Francis Martin</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000094 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000094 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14976238
   |texte=   Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14976238" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021